lifestyle guide

International System of Units

International System of Units . Name adopted by the XI General Conference of Weights and Measures (held in Paris in 1960 ) for a universal, unified and coherent system of measurement units, based on the mks (meter-kilogram-second) system. This system is known as SI, initials of International System. At the 1960 Conference, standards were defined for six basic or fundamental units and two supplementary units ( radian and steradian ); In 1971 , a seventh fundamental unit, the mole, was added. The two supplementary units were abolished as an independent class within the International System at the XX General Conference on Weights and Measures ( 1995 ); These two units were incorporated into the SI as dimensionless derived units.

Summary

[ disguise ]

  • 1 Importance
  • 2 Emergence
  • 3 Prefixes, Symbols, and Factors in the SI
  • 4 Writing Rules
  • 5 Most used quantities and units
    • 1 Units and Linear Equivalences
    • 2 Units and superficial equivalences
    • 3 Units and volume equivalents
    • 4 Mass units and equivalences
    • 5 Other usage equivalents
    • 6 Speed ​​units and their equivalences
    • 7 Units equivalent to physical quantities
    • 8 Units derived from systematic use in Physical Chemistry
    • 9 Physical constants frequently used in Chemistry and Physics
  • 6 External links
  • 7 Sources

Importance

The development achieved centuries ago by some countries such as Germany , the USA , Spain and England in science and technology; brought with it the need to use different physical magnitudes to express the technical characteristics of the different discoveries. Trade with the different countries of the world brought with it the spread of physical magnitudes and units that took root in the population.
All this exchange of technology or trade between countries with greater or lesser development made it easier for the same characteristic to be assigned a different unit, which depended on the country that manufactured it. This diversity of magnitudes and physical units forced man to establish equivalences and therefore carry out conversions between units; leading to inaccuracies and errors.
For all of the above, the State Committee for Normalization , using the powers conferred on it by Decree Law No. 62 of December 30 , 1982 , by the Third Special Provision, establishes the conversion coefficients between units of measurement of legal use in the country.

Emergence

The International System of Units (SI) arises from the MKS Metric System (meter, kilogram and second) and three systems derived from it. That of MKSA Electrotechnics (meter, Kilogram, second and ampere); MKSG Thermotechnics (meter, kilogram , second and degree kelvin); of MSC Lighting Technology (meter, second and candela). These systems were used in isolation and had the meter, kilogram and second as a common element. Thus the idea of ​​organizing on the basis of these systems arises. A single system of units, universal and coherent that covered all branches of science and technology.
As a result of the consultations made to thousands of scientists, technicians and educators from all countries, the International System of Units (SI) was established, to be adopted by all signatory countries of the meter conversion.
The General Conferences on Weights and Measures that were in charge of this arduous work, made present the need for its prompt application in all fields of science, technology and education. As a consequence of this decision, scientists and educators around the world began a campaign for the state implementation of this system as unique and universal.
This method consists of choosing some basic units of measurement as the basis of the system; considered independent of each other, from which the units of measurement of physical quantities are derived. There is another group of derived measurement units that are determined according to the physical formulas that relate physical quantities to each other. The basic SI units of measurement are: the meter (m), the kilogram (kg), the second (s), the ampere (A), the Kelvin (K), the candela (cd), and the mole (mol). .

Prefixes, Symbols, and Factors in the SI

    PREFIX    SYMBOL       FACTOR
 exa   AND  10 18 = 1,000,000,000,000,000,000
 peta   T  10 15 = 1,000,000,000,000,000
 tera   Q  10 12 = 1,000,000,000,000
 jig   g  10 9 = 1,000,000,000
 mega   M  10 6 = 1,000,000
 kilo    k  10 3 = 1,000
 hecto    h  10 2 = 100
 said   gives  10 1 =10
 I said   d  10 -1 = 0.1
 centi   c  10 -2 = 0.01
 milli   m  10 -3 = 0.001
 micro   µ  10 -6 = 0.000 001
 elder brother   n  10 -9 = 0.000 000 001
 beak   p  10 -12 = 0.000 000 000 001
 femto   F  10 -15 = 0.000 000 000 000 001
 atto   to  10 -18 = 0.000 000 000 000 000 001

 

Other symbols
Listed below are a group of symbols approved by the SI to designate other units of measurement. For this, letters of the Greek, Latin alphabet or special signs are used.

 UNIT  SYMBOL  UNIT  SYMBOL  UNIT  SYMBOL
 Degree  °  Percent  %  Bel  b
 Minute  ′  Per thousand  ‰  decibel  dB
 Second  ″  Part per million  ppm

 

Writing rules

When consulting texts or other documents as well as television , it can be observed that many people dedicated to this purpose make errors in writing units, physical magnitudes or their symbols. Below is a group of rules for writing these, which are intended to improve this unfortunate error that can be observed daily.

  1. Multiples and Sub-multiples of SI units are formed by multiplying or dividing the value of the SI unit by 10 or an integer power.
  2. SI prefix symbols are written with Latin characters, with no space between the prefix and the unit of measurement symbol.
  3. The symbols of the units of measurement and the units of relative and logarithmic measurement are set to use letters of the Latin, Greek alphabet or special signs.(see table)
  4. Symbols for units of measurement are printed in Roman (round) characters regardless of the characters used in the rest of the text.
  5. SI unit symbols are written with lowercase letters. However, when these are derived from patronymics, capital letters are used for the first letter.
  6. The symbols for SI units remain unchanged in plural.
  7. SI unit symbols are written without a period at the end. If the symbol appears at the end of the sentence, a space will be left between the symbol and the period. (The distance is 36 km)
  8. The writing of the numbers will be done using Arabic figures. In the case of decimal numbers, the separation of the integer part of the decimal will be done by a comma. (, )
  9. Writing multi-figure decimal numbers, for easier reading, will be done by separating the whole part into groups of three figures from right to left, starting from the comma, leaving a blank space. The decimal part will also be written in groups of three figures, from left to right starting from the comma. (26 450 327.693 578 31)After each numerical value, symbols are written leaving a space between the number and the first letter of the symbol. (65km)
  10. Generally, in written texts, the symbols of the units will be used and not their full names. In the event that it is necessary to write the complete names of the SI units; These will be written in lower case just like the number. (twenty meters). Only the full name of the unit will be written when referring to it.
  11. When a symbol accompanies a decimal value, it will be placed after all the figures. (368.54 dm)
  12. When indicating values ​​of physical quantities with their limit deviations, when indicating an interval or when listing several numerical values, the unit symbol will be used according to the following example:
    1. 20 mm.25 mm or (20.25) mm
    2. 80;100 and 150 km
    3. From 18 to 25 Pa
    4. (20 ± 2) °c or 20 °c ± 2 °c
    5. from 120 to 150 kg
    6. 5m±3mm
  13. In written texts, a symbol should not begin the sentence.
  14. It is allowed to use symbols in column titles and in the names of table rows. The use of SI prefixes alone, without the accompanying unit of measurement, is not permitted.
  15. When writing numbers in text, they will be made the size of the capital letter.
  16. When writing several consecutive numbers, separate them by semicolons.

Most used quantities and units

The most commonly used measurement units are listed below with their respective equivalences to SI and other units. These are grouped into linear, superficial, volume and mass for better understanding.

Units and Linear Equivalences

 No        Unit    Symbol                  Equivalence
 1  kilometer  km  1000m
 2  hectometer  hmm  100m
 3  decameter  dam  10m
 4  fathom  1,671 81 m
 5  string  20,352 m
 6  foot (Cuban)  0.282 667 m
 7  foot (Spanish)  0.278 635 m
 8  inch (Cuban)  0.023 556 m
 9  inch (Spanish)  0.023 219 m
 10  inch (international)  0.025 4 m (most used in Cuba)
 eleven  vara (cuban)  0.848m
 12  vara (Spanish)  0.835 905 m
 13  yard  yd  0.914 4 m = 3 foot = 36 inch
 14  league  4 240 m = 5 000 vara = 2.634 6 mile
 fifteen  chaín (surveyor’s chain)  20,116 8 m = 66 ft
 16  mile (statute mile)  mile  1 609,344 m
 17  international nautical mile  1 853.18 m

 

Units and superficial equivalences

No        Units Symbols      Equivalences
 1  square kilometer  [[km 2]]  1,000,000 m²
 2  square hectometer hm²  10,000 m² = 1 ha (hectare)
 3  square decameter dam²  100 m²
 4  hectare ha  10,000 m²
 5  area to  100 m²
 6  centiare AC  10 m²
 7  acre  4,046.86 m²
 8  chivalry cab  134 202.06 m² = 13.420 m² = 324 square cord
 9  besana or vesana 2,588.77 m² = 3,600 square Cuban vara
 10  expensive  13,420.2 m²
 eleven  square twine  414,204 m² = 576 square vara
 12  quatrain  8 387.6 m² = 0.062 cab = 0.838
 13  square league  17,977 6.10 6 m²
 14  square foot (Cuban)  0.079 9 m²
 fifteen  square inch (Cuban)  554,866.10 -6 m 2
 16  square rod (Cuban)  0.719 104 m²
 17  rose or rose of 10,000 Cuban square vara  7 191.04 m²
 18  rose or rose of 18 square cord  7 455,670 m²

 

Units and volume equivalents

No Units Symbols Equivalences
 1  liter  l  1000 mL= 1 dm 3
 2  bottle  0, 750 L = 750 mL = 750 cm 3
 3  american gallon  3,785 41L = 3,785 41dm 3
 4  english gallon  4,546 09 L = 4,546 09 dm 3
 5  carboy 5 gallons = 25 bottles = 18.75 L
 6  liquid pint (us) 0.473 176.10 -3 m 3
 7 tablespoon 15 dm 3 = 15 mL
 8 teaspoonful 5 dm 3 = 5 mL

 

Units and mass equivalences

No Units Symbols Equivalences
 1 at sign  @ 11.502 3 kg = 25 lb
 2 spanish pound  lb 0.460 093 kg = 460 g = 16 ounces
 3 Spanish quintal  qq 46.009 3 kg = 100 lb
 4 metric quintal  q 100kg
 5 short ton (Spain) 920.19kg
 6 long ton (Spain) 1030.61kg
 7 metric ton 1000kg
 8 ounce (Spanish) 28,755 8.10 3 kg

 

Other usage equivalents

No  Units  Symbols     Equivalences
 1  light-year ly  9,460 53.10 15 m
 2  barrel for oil bbl  158,987 L = 158,987 dm 3 = 42 gallons
 3  horsepower (English)  #!  745,700w
 4  steam horse  CV  735,499 w
 5  decade  10 years = 120 months
 6  century  100 years = 1200 months
 7  printing point  0.351 460.10 -3 m
 8  cubic foot of wood  2,359 74.10 -3 m 3
 9  yard  3 foot = 36 inches
 10  foot  12 inch = 0.304 8 m = 30.48 cm
 eleven  international inch  0.025 4m = 2.54cm

 

Speed ​​units and their equivalents

 No       Unit       Equivalence
 1  international knot (kn)  0.514 444 m/s = 1.852 km/h
 2  knot (uk)  0.514 773 m/s = 1.853 18 km/h
 3  yard per minute (yd/min)  1,524.10 -3 m/s
 4  kilometer per hour (km/h)  0.277 778 m/s
 5  mile per hour (mile/h)  0.447 04 m/s = 1.609 344 km/h
 6  meter per second (m/s)  3.6km/h

Units equivalent to physical quantities

 No       Basic physical quantity       dimensional symbol       Basic unit       Unity symbol       Observations
 1  Length  l  meter  m  It is defined by setting the value of the speed of light in a vacuum.
 2  Time.  T  second  yes  It is defined by setting the value of the frequency of the hyperfine transition of the cesium atom
 3  Mass  M  kilogram  kg  It is the mass of the “standard cylinder” kept at the International Bureau of Weights and Measures, in Sèvres, France. It is equivalent to the mass occupied by one liter of pure water at 14.5 °C or 286.75 K.
 4  Electric current intensity  Yo  amp  TO  It is defined by setting the value of the magnetic constant.
 5  Temperature  θ  Kelvin  K  It is defined by setting the value of the thermodynamic temperature of the triple point of water.
 6  Amount of substance  n  mole  mole  It is defined by setting the value of the molar mass of the 12C atom to 12 grams/mol. See also Avogadro’s number.
 7  Luminous intensity  J.  candle  mole  See also related concepts: lumen, lux and physical illumination.
  • One Kelvin is equal to 273 oC

Units derived from systematic use in Physical Chemistry

 Physical magnitude       SI unit       Symbol       Definition
 Force  Newton  N  Kg.ms -2
 Pressure  Pascal.  Da  Kg.m -1 .s -2 =Nm -2
 Energy  joule  J.  Kg.m2.s-2=Nm
 Power  watt  W  Js -1 =kg.m 2 .s -2
 electric charge  Coulomb  c  Ace
 Electric potential difference  volt  V  Kg.m 2 .s -3 .A -2 =VA -1
 Electric resistance  ohm  Ω  Kg.m 2 s -3 .A -2 =VA -1
 Frequency  Hertz  Hz  s -1 (cycles per seconds)
 Surface tension  Does not have  Does not have  Kg.s -2 =Nm -1 =Jm -2
 Dynamic viscosity  Does not have  Does not have  Kg.m -1 .s -1
 Permittivity  Does not have  Does not have  Kg -1 .m -3 .s 4 .A 2

Physical constants frequently used in Chemistry and Physics

     Constant   Symbol       Value (YES)
 Gas molar  R  8.314 3 JK -1 .mol ​​-1
 From Avogadro  Nah.  6.022 5.10 23 mol -1
 By Boltzman  K  1,380 5. 10 -23 Jk -1
 Faraday  F  9.648 7. 10 4 C.mol
 De Plank  h  6,625 6.10 -34 J.s
 Elemental charge  and  1.602 1. 10 -19 C
 Speed ​​of light (vacuum)  c  2.997 9.10 8 ms -1

 

Leave a Reply

Your email address will not be published. Required fields are marked *